Ian L. Dryden and Kanti V. Mardia
(2016年7月刊行,Cambridge University Press, Cambridge, xxvi+454 pp. + 16 color plates, ISBN:9780470699621 [hbk] → 版元ページ)
【目次】
Preface xix
Preface to the first edition xxi
Acknowledgements for the first edition xxv1: Introduction 1
1.1 Definition and Motivation 1
1.2 Landmarks 3
1.3 The shapes package in R 7
1.4 Practical Applications 82: Size measures and shape coordinates 31
2.1 History 31
2.2 Size 33
2.3 Traditional shape coordinates 39
2.4 Bookstein shape coordinates 41
2.5 Kendall’s shape coordinates 59
2.6 Triangle shape co-ordinates 523: Manifolds, shape and size-and-shape 59
3.1 Riemannian Manifolds 59
3.2 Shape 61
3.3 Size-and-shape 66
3.4 Reflection invariance 67
3.5 Discussion 674: Shape space 69
4.1 Shape space distances 69
4.2 Comparing shape distances 77
4.3 Planar case 82
4.4 Tangent space co-ordinates 885: Size-and-shape space 99
5.1 Introduction 99
5.2 RMSD measures 99
5.3 Geometry 101
5.4 Tangent co-ordinates for size-and-shape space 103
5.5 Geodesics 104
5.6 Size-and-shape co-ordinates 104
5.7 Allometry 1076: Manifold means 111
6.1 Intrinsic and extrinsic means 111
6.2 Population mean shapes 112
6.3 Sample mean shape 113
6.4 Comparing mean shapes 115
6.5 Calculation of mean shapes in R 117
6.6 Shape of the means 120
6.7 Means in size-and-shape space 120
6.8 Principal geodesic mean 121
6.9 Riemannian barycentres 1227: Procrustes analysis 125
7.1 Introduction 125
7.2 Ordinary Procrustes analysis 126
7.3 Generalized Procrustes analysis 134
7.4 Generalized Procrustes algorithms for shape analysis 136
7.5 Generalized Procrustes algorithms for size-and-shape analysis 143
7.6 Variants of generalized Procrustes Analysis 145
7.7 Shape variability: principal components analysis 150
7.8 PCA for size-and-shape 166
7.9 Canonical variate analysis 166
7.10 Discriminant analysis 168
7.11 Independent components analysis 169
7.12 Bilateral symmetry 1718: 2D Procrustes analysis using complex arithmetic 175
8.1 Introduction 175
8.2 Shape distance and Procrustes matching 175
8.3 Estimation of mean shape 178
8.4 Planar shape analysis in R 181
8.5 Shape variability 1829: Tangent space inference 185
9.1 Tangent space small variability inference for mean shapes 185
9.2 Inference using Procrustes statistics under isotropy 197
9.3 Size-and-shape tests 206
9.4 Edge-based shape coordinates 212
9.5 Investigating allometry 21210: Shape and size-and-shape distributions 217
10.1 The Uniform distribution 217
10.2 Complex Bingham distribution 219
10.3 ComplexWatson distribution 227
10.4 Complex Angular central Gaussian distribution 231
10.5 Complex Bingham quartic distribution 231
10.6 A rotationally symmetric shape family 232
10.7 Other distributions 233
10.8 Bayesian inference 233
10.9 Size-and-shape distributions 237
10.10 Size-and-shape versus shape 237color plates
11: Offset normal shape distributions 239
11.1 Introduction 239
11.2 Offset normal shape distributions with general covariances 252
11.3 Inference for offset normal distributions 255
11.4 Practical Inference 258
11.5 Offset normal size-and-shape distributions 259
11.6 Distributions for higher dimensions 26212: Deformations for size and shape change 269
12.1 Deformations 269
12.2 Affine transformations 272
12.3 Pairs of Thin-plate Splines 279
12.4 Alternative approaches and history 303
12.5 Kriging 307
12.6 Diffeomorphic transformations 31413: Non-parametric inference and regression 317
13.1 Consistency 317
13.2 Uniqueness of intrinsic means 318
13.3 Non-parametric inference 322
13.4 Principal geodesics and shape curves 323
13.5 Statistical shape change 332
13.6 Robustness 336
13.7 Incomplete Data 33814: Unlabelled size-and-shape and shape analysis 341
14.1 The Green-Mardia model 342
14.2 Procrustes model 345
14.3 Related methods 348
14.4 Unlabelled Points 34915: Euclidean methods 353
15.1 Distance-based methods 353
15.2 Multidimensional scaling 353
15.3 Multidimensional scaling shape means 356
15.4 Euclidean distance matrix analysis for size-and-shape analysis 357
15.5 Log-distances and multivariate analysis 360
15.6 Euclidean shape tensor analysis 361
15.7 Distance methods versus geometrical methods 36216: Curves, surfaces and volumes 363
16.1 Shape factors and random sets 363
16.2 Outline data 364
16.3 Semi-landmarks 368
16.4 Square root velocity function 369
16.5 Curvature and torsion 374
16.6 Surfaces 374
16.7 Curvature, ridges and solid shape 37517: Shape in images 377
17.1 Introduction 377
17.2 High-level Bayesian image analysis 378
17.3 Prior models for objects 380
17.4 Warping and image averaging 38218: Object data and manifolds 391
18.1 Object oriented data analysis 391
18.2 Trees 392
18.3 Topological data analysis 393
18.4 General shape spaces and generalized Procrustes methods 393
18.5 Other types of shape 395
18.6 Manifolds 396
18.7 Reviews 396
Exercises 403
Appendix 403
References 407
Index 449